> The main reason topography emerges in physical brains is because spatially distant connections are physically difficult and expensive in biological systems.
The brain itself seems to have bottlenecks that aren't distance related, like hemispheres and the corpus callosum that are preserved over all placental mammals and other mammalian groups have something similar and still hemispheres. Maybe it's just an artifact of bilateral symmetry that is stuck in there from path dependence, or forcing a redundancy to make damage more recoverable, but maybe it has a big regularizing or alternatively specializing effect (regularization like dropout tends to force more distributed representations which seems kind of opposite to this work and other work like "Seeing is Believing: Brain-Inspired Modular Training for Mechanistic Interpretability," https://arxiv.org/abs/2305.08746 ).
The brain itself seems to have bottlenecks that aren't distance related, like hemispheres and the corpus callosum that are preserved over all placental mammals and other mammalian groups have something similar and still hemispheres. Maybe it's just an artifact of bilateral symmetry that is stuck in there from path dependence, or forcing a redundancy to make damage more recoverable, but maybe it has a big regularizing or alternatively specializing effect (regularization like dropout tends to force more distributed representations which seems kind of opposite to this work and other work like "Seeing is Believing: Brain-Inspired Modular Training for Mechanistic Interpretability," https://arxiv.org/abs/2305.08746 ).