Totally agreed, learning the ropes is very different now, and a strong foundation is definitely needed. But I also think where that foundation lies has changed.
My current project is in a technical domain I had very little prior background in, but I've been getting actual, visible results since day one because of AI. The amazing thing is that for any task I give it, the AI provides me a very useful overview of the thing it produces, and I have conversations with it if I have further questions. So I'm building domain knowledge incrementally even as I'm making progress on the project!
But I also know that this is only possible because of the pre-existing foundation of my experience as a software engineer. This lets me understand the language the AI uses to explain things, and I can dive deeper if I have questions. It also lets me understand what the code is doing, which lets me catch subtle issues before they compound.
I suppose it's the same with reading books, but books being static tend to give a much broader overview upfront, whereas interacting with LLMs results in a much more focused learning path.
So a foundation is essential, but it can now be much more general -- such as generic coding ability -- but that only comes with extensive hands-on experience. There is at least one preliminary study showing that students who rely on AI do not develop the critical problem solving, coding and debugging skills necessary to be good programmers:
My current project is in a technical domain I had very little prior background in, but I've been getting actual, visible results since day one because of AI. The amazing thing is that for any task I give it, the AI provides me a very useful overview of the thing it produces, and I have conversations with it if I have further questions. So I'm building domain knowledge incrementally even as I'm making progress on the project!
But I also know that this is only possible because of the pre-existing foundation of my experience as a software engineer. This lets me understand the language the AI uses to explain things, and I can dive deeper if I have questions. It also lets me understand what the code is doing, which lets me catch subtle issues before they compound.
I suppose it's the same with reading books, but books being static tend to give a much broader overview upfront, whereas interacting with LLMs results in a much more focused learning path.
So a foundation is essential, but it can now be much more general -- such as generic coding ability -- but that only comes with extensive hands-on experience. There is at least one preliminary study showing that students who rely on AI do not develop the critical problem solving, coding and debugging skills necessary to be good programmers:
https://www.mdpi.com/2076-3417/14/10/4115