I now know I never know whenever "a UUID" is stored or represented as a GUIDv1 or a UUIDv4/UUIDv7.
I know it's supposed to be "just 128 bits", but somehow, I had a bunch of issues running old Java servlets+old Java persistence+old MS SQL stack that insisted, when "converting" between java.util.UUID to MS SQL Transact-SQL uniqueidentifier, every now and then, that it would be "smart" if it flipped the endianess of said UUID/GUID to "help me". It got to a point where the endpoints had to manually "fix" the endianess and insert/select/update/delete for both the "original" and the "fixed" versions of the identifiers to get the expected results back.
(My educated guess it's somewhat similar to those problems that happens when your persistence stack is "too smart" and tries to "fix timezones" of timestamps you're storing in a database for you, but does that wrong, some of the time.)
They are generated with different algorithms, if you find these distinctions to be semantically useful to operations, carry that distinction into the type.
I now know I never know whenever "a UUID" is stored or represented as a GUIDv1 or a UUIDv4/UUIDv7.
I know it's supposed to be "just 128 bits", but somehow, I had a bunch of issues running old Java servlets+old Java persistence+old MS SQL stack that insisted, when "converting" between java.util.UUID to MS SQL Transact-SQL uniqueidentifier, every now and then, that it would be "smart" if it flipped the endianess of said UUID/GUID to "help me". It got to a point where the endpoints had to manually "fix" the endianess and insert/select/update/delete for both the "original" and the "fixed" versions of the identifiers to get the expected results back.
(My educated guess it's somewhat similar to those problems that happens when your persistence stack is "too smart" and tries to "fix timezones" of timestamps you're storing in a database for you, but does that wrong, some of the time.)