I guess, what university and what level of math was that?
I majored in math at MIT, and even at the undergraduate level it was more like what OP is describing and less like what you're saying. I actually took linear algebra twice since my first major was Economics before deciding to add on a math major, and the version of linear algebra for your average engineer or economist (i.e.: a bunch of plug and chug matrices-type stuff), which is what I assume you're referring to, was very different. Linear algebra for mathematicians was all about vector spaces and bases and such, and was very interesting and full of proofs. I don't think actually concretely multiplying matrices was even a topic!
So I guess linear algebra is one of those topics where the math side is interesting and very much what all the mathematicians here are describing, but where it turned out to be so useful for everything, that there's a non-mathematician version of it which is more like what it sounds like you experienced.
I majored in math at MIT, and even at the undergraduate level it was more like what OP is describing and less like what you're saying. I actually took linear algebra twice since my first major was Economics before deciding to add on a math major, and the version of linear algebra for your average engineer or economist (i.e.: a bunch of plug and chug matrices-type stuff), which is what I assume you're referring to, was very different. Linear algebra for mathematicians was all about vector spaces and bases and such, and was very interesting and full of proofs. I don't think actually concretely multiplying matrices was even a topic!
So I guess linear algebra is one of those topics where the math side is interesting and very much what all the mathematicians here are describing, but where it turned out to be so useful for everything, that there's a non-mathematician version of it which is more like what it sounds like you experienced.