Because x8 is simply shifting 3 bits left so it's "free" (fixed-sized shifts are very simple to implement), whereas generating the x7 would require the additional circuitry, which additionally will be more expensive than the x3 was (since it's another shift+add beyond what x3 required)
The trick is that Booth's algorithm gives you the ×8 term for free; you multiply by one more in the next base-8 digit. You can put either ×4 or -×1 into a term, but you can't put both of them into one term. So you can do ×8 - ×1 but you can't do ×4 - ×1.
> (What about ×5? If you can compute ×3, you can subtract that from ×8 to get ×5.)
Why can't you do the same to subtract x4 from x7 to get x3?