Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

Good perspective. Maybe it's because people are primed by sci-fi to treat this as a god-like oracle model. Note that even in the real-world simulations can give wrong results as we don't have perfect information, so we'll probably never have such an oracle model.

But if you stick with the oracle framework, then it'd be better to model it as some sort of "fuzzy oracle" machine, right? I'm vaguely reminded of probabilistic turing machines here, in that you have some intrinsic amount of error (both due to the stochastic sampling as well as imperfect information). But the fact that prompting and RLHF works so well implies that by crawling around in this latent space, we can bound the errors to the point that it's "almost" an oracle, or a "simulation" of the true oracle that people want it to be.

And since lazy prompting techniques still work, that seems to imply that there's juice left to squeeze in terms of "alignment" (not in the safety sense, but in conditioning the distribution of outputs to increase the fidelity of the oracle simulation).

Also the second consequence is that probably the reason it needs so much data is because it just doesn't model _one_ thing, it tries to be a joint model of _everything_. A human learns with far less data, but the result is only a single personality. For a human to "act" as someone, they need to do training, character studies, and such to try to "learn" about the person, and even then good acting is a rare skill.

If you genuinely want an oracle machine, there's no way to avoid vacuuming up all the data that exists because without it you can't make a high fidelity simulation someone else. But on the flipside, if you're willing to be smarter about what facets you exclude then I'd guess there's probably a way to prune models in a way smarter than just quantizing them. I guess this is close to mixture-of-experts.



I get that people really want an oracle, and are going to judge any AI system by how good it does at that - yes from sci-fi influenced expectations that expected AI to be rationally designed, and not inscrutable and alien like LLMs... but I think that will almost always be trying to fit a round peg into a square hole, and not using whatever we come up with very effectively. Surely, as LLMs have gotten better they have become more useful in that way so it is likely to continue getting better at pretending to be an oracle, even if never being very good at that compared to other things it can do.

Arguably, a (the?) key measure of intelligence is being able to accurately understand and model new phenomenon from a small amount of data, e.g. in a Bayesian sense. But in this case we are attempting to essentially evolve all of the structures of an intelligent system de novo from a stochastic optimization process- so is probably better compared to the entire history of evolution than to an individual human learning during their lifetime, although both analogies have big problems.

Overall, I think the training process will ultimately only be required to build a generally intelligent structure, and good inference from a small set of data or a totally new category of problem/phenomenon will happen entirely at the inference stage.




Consider applying for YC's Fall 2025 batch! Applications are open till Aug 4

Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: