Hacker News new | past | comments | ask | show | jobs | submit login

What you say is correct only when you adopt certain specific narrow definitions of the words, which you have not explained.

In its original sense, an electric current is any kind of movement of electric charge. In this wide sense, it also applies to the source of ferromagnetism.

Its meaning can be restricted to refer to the translational movement of electrically charged particles. With this narrower sense, there is still no need to use quantum mechanics to explain ferromagnetism. Even in classical electromagnetism, with the narrower-defined current, the sources of magnetic fields are decomposed into distributions of electric current densities and of magnetic moment densities, where the latter are the source of ferromagnetism. If necessary, it is possible to also use distributions of higher-order moment densities and the series of moments when the "electric current" is used in the narrow sense (of a first order moment) corresponds to the "electric current" used in its original, wide sense.

The isolated sentence "Spin is a type of intrinsic angular momentum that is not associated with any spatial motion" is logically contradictory (because, by definition, angular momentum is a characteristic of moving bodies). It can be correct only when you first specify that by "spatial motion" you mean only a certain kind of spatial motion.

The joke mentioned by another poster "Imagine a ball that is spinning, except it is not a ball and it is not spinning" is just a joke, because there is no doubt that the elementary particles are spinning.

Even when you model the elementary particles in the standard way, as point-like bodies (and it is debatable whether this is a good model), you cannot say that they are not rotating, because this would be the same mistake as saying that a delta distribution has a null value in the origin.

On the contrary, while you cannot say other things about the value of a delta distribution in the origin, what you can say with certainty is that it is not null.

In the same way, while you cannot say anything about characteristics of an electron like radius, mass density, angular velocity, electric current density and so on, you can say with certainty the values of various integral quantities (which integrate the corresponding delta distributions), like mass, electric charge, angular momentum and magnetic moment, so you can say with certainty that any electron is rotating (i.e. it has a non-null angular momentum).




Consider applying for YC's Fall 2025 batch! Applications are open till Aug 4

Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: