Great question! scheduling workloads onto GPUs in a way where VRAM is being utilised efficiently was quite the challenge.
What we found was the IO latency for loading model weights into VRAM will kill responsiveness if you don't "re-use" sessions (i.e. where the model weights remain loaded and you run multiple inference sessions over the same loaded weights).
Obviously projects like https://github.com/vllm-project/vllm exist but we needed to build out a scheduler that can run a fleet of GPUs for a matrix of text/image vs inference/finetune sessions.