Hacker Newsnew | past | comments | ask | show | jobs | submitlogin

People have shown GPT has an internal model of the state of a game of Othello:

Https://arxiv.org/abs/2210.13382




More accurately: a GPT derived DNN that’s been specifically trained (or fine-tuned, if you want to use OpenAI’s language) on a dataset of Othello games ends up with an internal model of an Othello board.

It looks like OpenAI have specifically added Othello game handling to chat.openai.org, so I guess they’ve done the same fine-tuning to ChatGPT? It would be interesting to know how good an untuned GPT3/4 was at Othello & whether OpenAI has fine-tuned it or not!

(Having just tried a few moves, it looks like ChatGPT is just as bad at Othello as it was at chess, so it’s interesting that it knows the initial board layout but can’t actually play any moves correctly: Every updated board it prints out is completely wrong.)


> it’s interesting that it knows the initial board layout

Why is that interesting? The initial board layout would appear all the time in the training data.


the initial board state is not ever encoded in the representation they use. imagine deducing the initial state of a chess board from the sequence of moves.


The state of the game, not the behavior of playing it intentionally. There is a world of difference between the two.

It was able to model the chronological series of game states that it read from an example game. It was able to include the arbitrary "new game state" of a prompt into that model, then extrapolate that "new game state" into "a new series of game states".

All of the logic and intentions involved in playing the example game were saved into that series of game states. By implicitly modeling a correctly played game, you can implicitly generate a valid continuation for any arbitrary game state; at least with a relatively high success rate.


As I see it, we do not really know much about how GPT does it. The approximations can be very universal so we do not really know what is computed. I take very much issue with people dismissing it as "pattern matching", "being close to the training data", because in order to generalise we try to learn the most general rules and through increasing complexity we learn the most general, simple computations (for some kind of simple and general).

But we have fundamental, mathematical bounds on the LLM. We know that the complexity is at most O(n^2) in token length n, probably closer to O(n). It can not "think" about a problem and recurse into simulating games. It can not simulate. It's an interesting frontier, especially because we have also cool results about the theoretical, universal approximation capabilities of RNNs.


There is only one thing about GPT that is mysterious: what parts of the model don't match a pattern we expect to be meaningful? What patterns did GPT find that we were not already hoping it would find?

And that's the least exciting possible mystery: any surprise behavior is categorized by us as a failure. If GPT's model has boundaries that don't make sense to us, we consider them noise. They are not useful behavior, and our goal is to minimize them.


So does AlphaGo has an internal model of Go's game theoretic structures, but nobody was asserting AlphaGo understands Go. Just because English is not specifiable does not give people an excuse to say the same model of computation, a neural network, "understands" English any more than a traditional or neural algorithm for Go understands Go.




Consider applying for YC's Fall 2025 batch! Applications are open till Aug 4

Guidelines | FAQ | Lists | API | Security | Legal | Apply to YC | Contact

Search: