1.6 GW per reactor for the latest ones under construction (Hinkley Point C) and in development (Sizewell C). Each site has 2 reactors for a total of 2 x 2 x 1.6 GW = 6.4 GW.
Although this is largely just replacing the UK's existing fleet of reactors, almost all of which will have shut down by the time Hinkley Point C comes online. Of the current 5 operating UK nuclear power stations, only Sizewell B is scheduled to operate beyond 2028.
> "They will need them built in the right place, because while more power cables can be built, you can't transfer a lot of power on very long distances"
One of the reasons offshore wind has been so economic & successful in the UK is they can usually plug in to existing, redundant transmission lines left behind by decommissioned coal and nuclear power stations, which are often on the coast. It's relatively cheap to connect to the grid when the infrastructure is already there waiting: you just need to build the cables from the turbines to the shore.
1.6 GW per reactor for the latest ones under construction (Hinkley Point C) and in development (Sizewell C). Each site has 2 reactors for a total of 2 x 2 x 1.6 GW = 6.4 GW.
Although this is largely just replacing the UK's existing fleet of reactors, almost all of which will have shut down by the time Hinkley Point C comes online. Of the current 5 operating UK nuclear power stations, only Sizewell B is scheduled to operate beyond 2028.
> "They will need them built in the right place, because while more power cables can be built, you can't transfer a lot of power on very long distances"
One of the reasons offshore wind has been so economic & successful in the UK is they can usually plug in to existing, redundant transmission lines left behind by decommissioned coal and nuclear power stations, which are often on the coast. It's relatively cheap to connect to the grid when the infrastructure is already there waiting: you just need to build the cables from the turbines to the shore.