I adore PRML, but the scope and depth is overwhelming. LfD encapsulates a number of really core principles in a simple text. The companion course is outstanding and available on EdX.
The tradeoff is that LfD doesn't cover a lot of breath in terms of looking at specific algorithms, but your other texts will do a better job there.
My second recommendation is to read the documentation for Scikit.Learn. It's amazingly instructive and a practical guide to doing ML in practice.
I strongly second this. Abu Mostafa has videos and homework for this course too. This course was the one that made a LOT of fundamental things “click”, like, why does learning even work and what are some broad expectations about what we can and cannot learn.
I adore PRML, but the scope and depth is overwhelming. LfD encapsulates a number of really core principles in a simple text. The companion course is outstanding and available on EdX.
The tradeoff is that LfD doesn't cover a lot of breath in terms of looking at specific algorithms, but your other texts will do a better job there.
My second recommendation is to read the documentation for Scikit.Learn. It's amazingly instructive and a practical guide to doing ML in practice.