"we built the As- sise distributed file system, based on a persistent, replicated coherence protocol that manages client-local PMM as a lin- earizable and crash-recoverable cache between applications and slower (and possibly remote) storage. Assise maximizes locality for all file IO by carrying out IO on process-local, socket-local, and client-local PMM whenever possible. Assise minimizes coherence overhead by maintaining consistency at IO operation granularity, rather than at fixed block sizes.
We compare Assise to Ceph/BlueStore, NFS, and Octopus on a cluster with Intel Optane DC PMMs and SSDs for com- mon cloud applications and benchmarks, such as LevelDB, Postfix, and FileBench. We find that Assise improves write latency up to 22×, throughput up to 56×, fail-over time up to 103×, and scales up to 6× better than its counterparts, while providing stronger consistency semantics."
LineFS is being compared to Assise https://www.cs.utexas.edu/users/witchel/pubs/anderson20osdi-...
which opens the second paper with :
"we built the As- sise distributed file system, based on a persistent, replicated coherence protocol that manages client-local PMM as a lin- earizable and crash-recoverable cache between applications and slower (and possibly remote) storage. Assise maximizes locality for all file IO by carrying out IO on process-local, socket-local, and client-local PMM whenever possible. Assise minimizes coherence overhead by maintaining consistency at IO operation granularity, rather than at fixed block sizes. We compare Assise to Ceph/BlueStore, NFS, and Octopus on a cluster with Intel Optane DC PMMs and SSDs for com- mon cloud applications and benchmarks, such as LevelDB, Postfix, and FileBench. We find that Assise improves write latency up to 22×, throughput up to 56×, fail-over time up to 103×, and scales up to 6× better than its counterparts, while providing stronger consistency semantics."