CS already abuses equality all the time with big-O notation. Often you see stuff like f(n) = O(N²), when they mean that f ∈ O(N²). It's fine because everyone knows what's going on, but it's not using it in the sense of equality.
Sigh; it seems it's only programmers who think CS has a monopoly on big-O notation, or keep calling it abuse of notation and trying to use ∈, when it's really = that's the standard notation in mathematics (and for good reason).
Before Knuth popularized Big O notation in CS and started the field of analysis of algorithms, already in 1958 N. G. de Bruijn wrote an entire book on Asymptotic Methods in Analysis (not CS): see a few of its leading pages here: https://shreevatsa.wordpress.com/2014/03/13/big-o-notation-a...
And the notation was already being used by Bachmann in 1894 and Landau by 1909 in analytic number theory, well before computers. It was perfectly commonplace to use big-O notation with the equals sign very quickly: see e.g. this paper by Hardy and Littlewood (https://projecteuclid.org/download/pdf_1/euclid.acta/1485887...) from 1914, well before even Turing machines or lambda calculus were formulated, let alone actual computers or analysis of algorithms.
The statement about sine above is not something mathematicians would write. It makes little sense to use big-O notation in this context, as it doesn't say anything useful here: the O(x^7) element absolutely dominates the remaining explicit elements of lower order, so including them tells us absolutely nothing. In fact, sin(x) = O(1).
However, mathematicians do indeed use similar notation in this context, that is, little-o notation. It is in fact true that
Notice that in your example, you have o(x^5) and an explicit x^5 term. In my example I have O(x^7), but no explicit x^7 term.
It is true that I cannot think of a circumstance where you want to do this abuse of notation and would care if you were forced to use little-o or big-O instead of the other.
In my experience, it happens to be more common to use big-O.
I was taught to use tilde in big-O notation. Your use of "set element" operator is not quite correct either, because of the limit that's going on there.
I don't think the limit is really an issue here. Most CS textbooks define big-O with the limit ->infinity part baked into the definition. So, this is more of an issue of different people using different definitions than an issue of abuse of notation.