What's beautiful about this paper is that it shows a provable separation in the power of quantum circuits over classical circuits. That is in contrast to many cases where quantum advantage is only suspected (the most notorious being Shor's algorithm: Factoring could be in P).
Another cool thing is that this separation is fundamentally connected to quantum entanglement and the challenge of simulating measurements on multipartite quantum states with shared randomness and classical communication. This gives me some hope that this points to a path for future deep insights separating quantum from classical computing.
What's beautiful about this paper is that it shows a provable separation in the power of quantum circuits over classical circuits. That is in contrast to many cases where quantum advantage is only suspected (the most notorious being Shor's algorithm: Factoring could be in P).
Another cool thing is that this separation is fundamentally connected to quantum entanglement and the challenge of simulating measurements on multipartite quantum states with shared randomness and classical communication. This gives me some hope that this points to a path for future deep insights separating quantum from classical computing.